8.808/8.308 TAP 2026 Recitation 8: Simulating many-body interactions off
lattice

Jessica Metzger

jessmetzQmit.edu | Office hours: 1/9, 1/14, 1/20, 1/27 11am-12pm (8-320)

January 23, 2026

Let’s consider an “off-lattice” system of many particles labeled ¢ = 1,2,..., N with coordinates r;(t). The particles will be
described by some Langevin dynamics, including interactions between the particles, which we would like to simulate. For
example, consider active Brownian particles (ABPs) in 2 dimensions, which evolve as

£5(t) = voul6i ()] = > VU(ri —r)) (1)

J#i
0:(t) = /2D, &(t) , (2)

where u[f;] = Z cos 6; + ysin6; would be the orientation vector of particle ¢ with orientation 6;.

Simulating this system for a very large number of particles presents a problem. Because there are N(N — 1)/2 pairs
of particles, we may have to calculate the interaction force N(N — 1)/2 times. This is too computationally expensive for
the modern standard of simulating systems of N ~ 10°. Even if each force calculation took only ~10 CPU cycles, or ~3
nanoseconds on average, calculating the force N(N — 1)/2 times for a single timestep would take ~ 20 seconds. This makes
studying the long-time behavior of the system impossible on reasonable timescales.

For example, the simulations shown on the right (from
Hecht et al. arXiv:2102.13007) depict 39,200 ABPs with
a timestep dt = 5 x 1079, simulated up to a time ¢ = 50.
Thus, reaching the end required 107 timesteps. If each
one took 20 seconds, the entire simulation would take
over 6 years!

To remedy this, we can create a “lattice” that narrows down the number of pairs we have to calculate. In most realistic
systems, the interaction forces have a finite radius. For example, we often use the purely repulsive harmonic potential

mailto:jessmetz@mit.edu
https://doi.org/10.48550/arXiv.2102.13007

k
2
E(lfL)z r| < 7o
U)=4q2> ™7 : (3)
0, otherwise
‘ T
—70 To
along with the Weeks-Chandler-Anderson (WCA) potential
U(r)
20k |
12 6
4k[()" — (™ k 21/6
U(I‘): [(r) (r)]+ ’ |I‘|<) o 4 10k +
0, otherwise
r
—T0 To

When |r| is larger than some cutoff (1 or 2!/67), this is zero, and we don’t need to worry about interactions between
particles farther than this. We will now show how to simulate the dynamics accurately, without having to worry about the

nonexistent interactions between faraway particles.

1 SPATIAL HASHING SETUP

1 Spatial hashing setup

We will go over how to implement a “spatial hashing” algorithm. It creates a bookkeeping lattice that sorts particles and
allows us to neglect faraway pairs, while leaving the physics of the simulation completely unchanged.

Start a simulation by initializing the particles and their states as usual. Once your particles have been placed, define a
grid of boxes where the box width is the maximum interaction length, and do the following:

e Save the box indices bi,bj as attributes of each particle i

e Create a boxes array. In each entry boxes[bi,bj], enter either
— if empty, boxes[bi,bjl=-1
— if not empty, boxes [bi,bjl=i for one particle i inside the box (doesn’t matter which). This particle is now the first
in the box.
The particles in each box will be (arbitrarily) ordered, with boxes [bi,bjl=i being the first. This ordering will be stored
in the neighbors list:

e Create a list neighbors which you will use to iterate the particles in each box. The entries of neighbors are as follows:
— neighbors[2i-1] is the index of the particle before particle i in its box
— neighbors[2i] is the index of the particle after particle i in its box
— For a particle i which is the first in its box, neighbors[2i-1]=-1. (There is no one before it.)
— For a particle i which is the last in its box, neighbors[2i]=-1. (There is no one after it.)

Here is an example configuration:

i | bi | bj | neighbors[2i-1] | neighbors[2i]
113]|s -1 -1
neighbors
2] 4| 4 -1 -1
| 3|2 |2 -1 6 -
5 | 413 | 4 -1 -1 1
1 -1
@ 55| 3 -1 -1
4 Z\ 6 2| 2 3 -1 -1
— -1
3 L~ /S boxes 6
3) N
9 -1
6 5|-1]-1]1 [-1]-1 -
1 1= _
b; al-1)-1|4a]2|-1 I
1 2 3 4 5 3(-1]-1]-1]-1] 5 -1
b1 > Tz 1|3 |-1]-1]-1 3
1-1]-1]|-1]-1]-1 1

1 SPATIAL HASHING SETUP

Another example:

i | bi | bj | neighbors[2i-1] | neighbors[2i]
1| 3|5 6 -1 ,
neighbors
2] 4 3 3 5
— °
3] 4 3 -1 2
5 1] | 4 2| 2 -1 -1 1
51| 4 3 2 -1 3
4 6| 3|5 -1 1 5
-1
3 5 boxes 2
5 N—")
/‘;\ 5((-1]-1]16 |-1(-1
) - -1
bj 4 1-1]-1|-1]|-1(-1 2
1 2 3 4 5 3|(-1]-1]-1|3 (-1 -1
bl ’ Tz -1 4 |-1]|-1]-1 -1
1
1]-1]-1]-1(-1(-1
D]
1 2 3 4 5
bi ——

Iterating through the particles in a box is done through the neighbors list. Starting at some box, e.g. (bi,bj)=(4,3),
we will start with boxes[bi,bj] = 3, so particle 3. Next will be the particle neighbors [2x3]=2. Next will be the particle
neighbors[2*2]=5. Finally, we will reach neighbors[2+5]=-1, which signifies we have reached the end of the box. This
process looks like this:

neighbors 6 |-1|3 |5 |-1|2|-1|-1]2(|-1(-1|1
boxes[bi,bj]

We will now go over pseudocode that does this iteration, and uses it to calculate inter-particle forces.

2 CALCULATING FORCES

2 Calculating forces

To calculate the forces, instead of iterating over particles, we iterate over boxes [bi,bj]. Here is pseudocode for how to
calculate the forces:

for bi=1 to Nxbox, bj=1 to Nybox
j = boxes[bi,bj] // get first particle in (bi,bj)
k = neighbors[2j] // get next particle after j in (bi,bj)

// iterate through remaining particles in this box
while k != -1

// calculate forces. may be 0

fx = force_x(particles[j].x, particles[k].x)
fy = force_y(particles[j].y, particles[k].y)
particles[j].force_x += fx
particles[j].force_y += fy
particles[k].force_x -= fx // action-reaction
particles[k] .force_y -= fy // action-reaction

k = neighbors[2k] // move to next particle in this box
end while

// iterate through neighboring boxes (up, right, etc.)
nbijs = [(bi,bj+1), (bi+l,bj+1), (bi+1,bj), (bi+1,bj-1)]
for m=1 to 5

nbi,nbj = nbijs [m]

// start with first particle in box (nbi,nbj)
k = boxes[nbi,nbj]

while k != -1 // iterate through all particles in box (nbi,nbj)

// calculate forces. May be 0

fx = force_x(particles[j].x, particles[k].x)
fy = force_y(particles[j]l.y, particles[k].y)
particles[j].force_x += fx
particles[j].force_y += fy

particles[k] .force_x -= fx // action-reaction
particles[k] .force_y -= fy // action-reaction

k = neighbors[2k] // move to next particle in (nbi,nbj)
end while
end for

j = neighbors[2j] // move to the next particle in box (bi,bj)
end for

We would also need to account for boundary conditions:
e If we have closed boundary conditions, some boxes won’t have neighboring boxes. This requires some if/then statements
in the for 1=1 to 5...loop.
e If we have periodic boundary conditions, locating neighboring boxes is more complicated than simply doing (bi,bj+1),
(bi+1,bj+1), etc. We will have to use modular arithmetic.
Moreover, when calculating distances inside the force_x and force_y functions, we will have to adjust based on periodic
boundary conditions.

3 MOVING PARTICLES

3 Moving particles

After we have calculated forces between particles, we can simply increment the positions according to these forces

for i=1 to N
particles[i] .x += particles[i].force_x * dt
particles[i] .y += particles[i].force_y * dt

// implement other parts of the dynamics (e.g. thermal noise, activity, ...)
end for

There is then a possibility that some particles have moved to other boxes. To take care of this, we check the box indices
(bi,bj) of each particle and compare it to the previous one. If it is different, then we move the particle as follows:

for i=1 to N
newbi = int(particles[i].x / box_width)
newbj = int(particles[i].y / box_width)
if newbi != bi or newbj != bj
remove_from_box(i,bi,bj,boxes,neighbors)
add_to_box (i,newbi,newbj,boxes,neighbors)
particles[i] .bi = newbi
particles[i].bj = newbj
end if
end for

where we must define functions remove_from box and add_to_box, something like:

function remove_from_box(i, bi, bj, boxes, neighbors)

next = neighbors[2i] // who was "after" i in box (bi,Dbj)
if boxes[bi,bjl==i // if 1 was the first in its box
boxes [bi,bjl=next // now the particle after i is the first in the box
if next !'= -1 // if "next" is a particle, there is no no one before it
neighbors[2next-1] = -1
end if
else // if i wasn’t the first particle in its box

prev = neighbors[2i-1] // who was "before" i
neighbors[2prev] = next // link i’s previous particle to its next one
if next != -1 // if "next" is a particle, now "prev" is before it
neighbors[2next-1] = prev
end
end
end

That is, we make sure the particle before and after i are linked together in neighbors, and that the first and last particles
in the box appropriately map to -1.

3 MOVING PARTICLES

function add_in_box(i, bi, bj, boxes, neighbors)

k = boxes[bi,bj] // k is currently the first particle in box (bi,Dbj)

boxes[bi,bj] = i // now, i is the first particle in box (bi,bj)

neighbors[2i-1] = -1 // there is now nobody before i

neighbors[2i] = k // now, k is after i

if k 1= -1 // if k is a particle, i is now before it
neighbors[2k-1] = i

end if

end function

In summary, we put particle i at the front of box bi,bj, and demote the previous first particle to be following it.
This is the end of the timestep. After incrementing time (and calculating any desired observables), you can repeat from
the beginning (“calculating forces”, Sec. 2).

4 TASKS

4 Tasks
If you want to get an off-lattice code running, you can do the following tasks:

1. Convince yourself that the algorithm for calculating forces (Sec. 2) doesn’t change the physics, relative to a naive
double-for-loop

2. Implement an off-lattice interacting system with a naive double-for-loop scheme for calculating forces, i.e.

// naive double-for-loop algorithm
for j=1 to N
for k=1 to j

// calculate force (may be zero)
fx = force_x(particles[j].x, particles[k].x)
fy = force_y(particles[j].y, particles[k].y)
particles[j].force_x += fx
particles[j].force_y += fy

particles[k].force_x -= fx // action-reaction
particles[k] .force_y -= fy // action-reaction
end for

end for

and see how slow it gets when N is large. (This code is much more simple and less prone to bugs than the spatial
hashing one, and is good for validating your spatial hashing code, so this step is important.)

3. Implement the spatial hashing algorithm (Sec. 2-3). Simulate some small systems (N ~ 10 to 100) and make sure the
dynamics look the same whether you use spatial hashing or the naive double-for-loop algorithm. Check that some
observables (e.g. spatial correlations, mean-squared-displacements, etc.) look the same for the two algorithms.

	Spatial hashing setup
	Calculating forces
	Moving particles
	Tasks

